HW01 - Phase Changes and Solutions

Question 1
Given that you have 14.5 moles of N_{2}, how many moles of H_{2} are theoretically needed to
produce 30.0 moles of NH_{3} according to reaction below?
$\qquad \mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
45.0 moles of H_{2}
33.8 moles of H_{2}
No matter how many moles of H_{2} are added, 30.0 moles of NH_{3} cannot be produced.
15.0 moles of H_{2}
Question 2
Consider the following reaction:
How much NH_{3} is needed to react completely with 34 g of $\mathrm{CH}_{3} \mathrm{OH}$?
$36 \mathrm{~N} \mathrm{NH}_{3}$
9 g NH
3

Question 3
Ice is heated at a constant pressure until it melts and vaporizes. What signs are
assoiated with the total change in entropy and enthalpy $(\Delta S$ and $\Delta H)$ for this sample of
water?
$\Delta \mathrm{S}=-, \Delta \mathrm{H}=-$ $\Delta \mathrm{S}=+, \Delta \mathrm{H}=-$ $\Delta \mathrm{S}=-, \Delta \mathrm{H}=+$ $\Delta \mathrm{S}=+, \Delta \mathrm{H}=+$

Question 4	1.25 pts
Which of the phase changes below might have a $\Delta H=11.6 \mathrm{~kJ} / \mathrm{mol}$?	
evaporation	
condensation	
freezing	
deposition	

Question 5
Which of the following statements is ALWAYS true about deposition?
None of the other answers are correct

$\mathrm{H}<0$
$\Delta \mathrm{H}<0$
$\Delta \mathrm{G}<0$
$\Delta \mathrm{~S}>0$

Question 6

1.25 pts

Consider liquid ethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)$ and liquid methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. Which would you expect to have a larger ΔH of vaporization?

It is impossible to tell unless you know the amount of each liquid involved.
Ethane, because it has stronger IMFs.
Methanol, because it has stronger IMFs.

Methanol because it has a larger molar mass.
Question 7
What is the change in entropy $\left(\Delta S_{\text {vap }}\right)$ for the vaporization of ethanol at its standard
boiling temperature of $78.4^{\circ} \mathrm{C} ? \quad\left(\Delta H_{\text {vap }}=38.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$
$0.110 \mathrm{~J} \cdot \mathrm{~mol}-1 \cdot \mathrm{~K}-1$
$110 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$0.492 \mathrm{~J} \cdot \mathrm{~mol}-1 \cdot \mathrm{~K}-1$
$492 \mathrm{~J} \cdot \mathrm{~mol}-1 \cdot \mathrm{~K}-1$

Question 8

The $\Delta H_{\text {vap }}{ }^{\circ}$ of methane is $8.519 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and its $\Delta S_{\text {vap }}{ }^{\circ}$ is $85.58 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$. What is the boiling point of methane?
372.54 K
0.09954 K
$0.09954^{\circ} \mathrm{C}$
99.54 K

Question 9

1.25 pts

How much heat is required to heat 2 grams of ice at $-30^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$. Use the values below for your calculations:

$$
\begin{aligned}
c_{\text {ice }} & =2.09 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \\
\Delta H_{\text {fus }} & =340 \mathrm{~J} / \mathrm{g} \\
c_{\text {water }} & =4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} \\
\Delta H_{\text {vap }} & =2260 \mathrm{~J} / \mathrm{g} \\
c_{\text {steam }} & =2.03 \mathrm{~J} / \mathrm{g} \quad{ }^{\circ} \mathrm{C}
\end{aligned}
$$

1.60 kJ

6150 kJ
6.00 kJ

Question 10

Use the phase diagram for CO_{2} provided below to answer the following question:
At 300 K and 10 bar, what is the stable phase of carbon dioxide?

liquid carbon dioxide
gaseous carbon dioxide
solid carbon dioxide
carbon dioxide as supercritical fluid

Question 11

1.25 pts

Use the phase diagram for CO_{2} in the question above to answer the following:
A sample of carbon dioxide is stored at 10,000 bar and 250 K . This sample is then decompressed to 1 bar at constant temperature. Then, at constant pressure it is heated to 400 K . Next, it is compressed at constant temperature to 200 bar. According to the phase diagram, how many phase transitions has the sample of carbon dioxide gone through, and what is its final state?

2, gas
3, supercritical fluid
3, liquid
2, supercritical fluid

Question 12

1.25 pts

Which of the following would change the vapor pressure of a sample of water in a closed container?

1. decreasing the size of the container
2. lower the container temperature
3. removing water from the container
[^0]1 and 2
2 and 3
1,2 , and 3

Question 13

1.25 pts

Which would have a higher vapor pressure: ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ or dimethyl ether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$?

They would have the same vapor pressure as their molecular weights are the same.
ethanol
dimethyl ether
It is impossible to tell unless the amount of each substance is known.
Question 14
Rank the following liquids by vapor pres
$\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{10}$.
$\mathrm{CH}_{4}<\mathrm{C}_{5} \mathrm{H}_{12}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{5} \mathrm{H}_{12}$
$\mathrm{C}_{5} \mathrm{H}_{12}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{CH}_{4}$
$\mathrm{C}_{2} \mathrm{H}_{6}<\mathrm{C}_{3} \mathrm{H}_{8}<\mathrm{C}_{4} \mathrm{H}_{10}<\mathrm{C}_{5} \mathrm{H}_{12}<\mathrm{CH}_{4}$

Question 15

1.25 pts

In a closed vessel containing water, the pressure is 18 torr. If we add more water to the vessel, this equilibrium pressure would...
change, but it is not possible to know if it will increase or decrease without more information.
increase.
remain the same.
decrease.

Question 16

1.25 pts

Consider two empty containers A and B whose volumes are 10 mL and 20 mL respectively. 1 mL of liquid water is put into each container and the temperature of each container is adjusted to $20^{\circ} \mathrm{C}$. The gas pressure in container B , which still has some liquid water in it, is found to be 17 torr. How would the pressure in container A and the amount of liquid water in container A compare to that of container B?
the pressure would be the same, there would be an equal amount of liquid water
the pressure would be greater, there would be less liquid water
the pressure would be the same, there would be more liquid water
the pressure would be greater, there would be an equal amount of liquid water

Question 17

1.25 pts

What is the vapor pressure of carbon disulfide at its normal boiling point?
Not enough informaiton.
1.0 atm
22.4 atm
2.0 atm

Question 18 At $20^{\circ} \mathrm{C}$ the vapor pressure of dry ice is 56.5 atm . If 10 g of dry ice (solid CO_{2}) is placed in an evacuated 0.25 L chamber at a constant $20^{\circ} \mathrm{C}$, will all of the solid sublime? None of dry ice would sublime. Yes. There is not enough information to answer this quesiton. Some of the dry ice will sublime, but not all of it. Question 19 An unknown liquid has a vapor pressure of 88 mmHg at $45^{\circ} \mathrm{C}$ and 39 mmHg at $25^{\circ} \mathrm{C}$. What is its heat of vaporization? $32 \mathrm{~kJ} / \mathrm{mol}$ $32,000 \mathrm{~kJ} / \mathrm{mol}$ $2000 \mathrm{~kJ} / \mathrm{mol}$ $2000 \mathrm{~J} / \mathrm{mol}$

Question 20	1.25 pts
are made when ___ are dissolved in ___ solutes, solutions, solvents	
solutions, solutes, solvents	
solutions, solvents, solutes	
solvents, solutes, solutions	

Question $21 \quad 1.25$ pts

Both ammonia $\left(\mathrm{NH}_{3}\right)$ and phosphine $\left(\mathrm{PH}_{3}\right)$ are soluble in water. Which is least soluble and why?
phosphine because it does not form hydrogen bonds with water molecules
ammonia because it does not form hydrogen bonds with water molecules
ammonia because the $\mathrm{N}-\mathrm{H}$ bonds are so strong that they cannot break to enable the ammonia to hydrogen-bond with water
phosphine because the P -H bonds are so strong that they cannot break to enable phosphine to hydrogen-bond with water

Rank the following in terms of decreasing miscibility in $\mathrm{C}_{8} \mathrm{H}_{18}$ (octane), a major component of gasoline: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ (chloroethane), $\mathrm{H}_{2} \mathrm{O}$ (water), $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$ (fluoroethane), and $\mathrm{C}_{9} \mathrm{H}_{20}$ (nonane).

Question 23
Which of the following is a possible combination of values for $\Delta H_{\text {latice }}$ and $\Delta H_{\text {hydration }}$
respectively for a salt whose dissolution is endothermic?
-200, -304
$-560,+560$
$+500,-520$
$+640,-620$

Question 24

1.25 pts

Which of the following would increase the solubility of a gas in water?

1. increase the temperature of the water
2. decrease the temperature of the water
3. increase the pressure of the gas above the water

1 only
2 only
2 and 3
1 and 3

[^0]: 2 only

