HW01 - Phase Changes and Solutions

	.25 pts Question 6	1.25 pts
Siven that you have 14.5 moles of N_2 , how many moles of H_2 are theoretically roduce 30.0 moles of NH_3 according to reaction below?	ded to ${\sf Consider\ liquid\ ethane\ (CH_3CH\ to\ have\ a\ larger\ }\Delta H$ of vaporiza	H_3) and liquid methanol (CH $_3$ OH). Which would you expect ation?
$N_2 + 3H_2 \longrightarrow 2NH_3$	O It is impossible to tell upless up	u know the amount of each liquid involved.
45.0 moles of H ₂		<u> </u>
33.8 moles of H ₂	Ethane, because it has stronge	
No matter how many moles of H ₂ are added, 30.0 moles of NH ₃ cannot be produced.	Methanol, because it has strong	
15.0 moles of H ₂	Methanol because it has a large	er moiar mass.
Question 2	.25 pts Question 7	1.25 pt
consider the following reaction: $2{\rm NH_3} + {\rm CH_3OH} \longrightarrow {\rm products}$	What is the change in entropy (boiling temperature of 78.4°C?	$(\Delta S_{\rm vap})$ for the vaporization of ethanol at its standard P ($\Delta H_{\rm vap}=38.6~{\rm kJ\cdot mol^{-1}})$
ow much NH ₃ is needed to react completely with 34g of CH ₃ OH?	0.110 J·mol-1·K-1	
36g NH ₃	○ 110 J·mol ⁻¹ ·K ⁻¹	
9g NH ₃	○ 0.492 J·mol-1·K-1	
) 128g NH ₃	○ 492 J·mol-1·K-1	
○ 1.3g NH ₃		
tuestion 3	Question 8	1.25 pi
	The AII 0 of mothers is 0.540	9 kJ mol ⁻¹ and its $\Delta S_{\mathrm{vap}}^{\circ}$ is 85.58 J mol ⁻¹ K ⁻¹ . What is the
assolated with the total change in entropy and enthalpy (ΔS and ΔH) for this satisfies	boiling point of methane?	o ka mar and its abyap is 60.000 mar it. What is the
ssoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater?	boiling point of methane?	o ku mor and its As _{vap} is 65.565 mor it What is the
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - \cdot \Delta H = -$	boiling point of methane? 372.54 K 0.09954 K	o ka mar and its ab _{vap} is 65.565 mor it What is the
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$	boiling point of methane?	o ka mar and its As _{vap} is 65.563 mar it What is the
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$ $\Delta S = - , \Delta H = +$	boiling point of methane? 372.54 K 0.09954 K 0.09954°C	o ka mar and its ab _{vap} is 60.000 mar in . What is the
esciated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$ $\Delta S = - , \Delta H = +$	boiling point of methane? 372.54 K 0.09954 K 0.09954°C	1.25 pt
esciated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$ $\Delta S = - , \Delta H = +$ $\Delta S = + , \Delta H = +$	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h	1.25 po neat 2 grams of ice at -30°C to steam at 100°C. Use the
solated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$ $\Delta S = - , \Delta H = +$ $\Delta S = + , \Delta H = +$ uestion 4	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 999.54 K Question 9	1.25 p neat 2 grams of ice at -30°C to steam at 100°C. Use the
isolated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = -, \Delta H = -$ $\Delta S = +, \Delta H = -$ $\Delta S = -, \Delta H = +$ $\Delta S = +, \Delta H = +$ westion 4 hich of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$?	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h	1.25 p neat 2 grams of ice at -30°C to steam at 100°C. Use the ons:
isolated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = -, \Delta H = -$ $\Delta S = +, \Delta H = -$ $\Delta S = -, \Delta H = +$ $\Delta S = +, \Delta H = +$ $\Delta S = +, \Delta H = +$ Usestion 4 Thich of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? Evaporation	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h	1.25 p neat 2 grams of ice at -30°C to steam at 100°C. Use the ons: $c_{\rm ice} = 2.09~{\rm J/g}~{\rm ^{\circ}C}$
sociated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$ $\Delta S = - , \Delta H = +$ $\Delta S = + , \Delta H = +$ Ruestion 4 Which of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? evaporation condensation	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h	1.25 prime at 2 grams of ice at -30°C to steam at 100°C. Use the ons: $c_{\rm ice} = 2.09~{\rm J/g}~{\rm °C}$ $\Delta H_{\rm fus} = 340~{\rm J/g}$ $c_{\rm water} = 4.184~{\rm J/g}~{\rm °C}$
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$ $\Delta S = - , \Delta H = +$ $\Delta S = + , \Delta H = +$ $\Delta S = + , \Delta H = +$ Ruestion 4 Which of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? evaporation condensation freezing	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h	1.25 pt the table 2 grams of ice at -30°C to steam at 100°C. Use the ons: $c_{\rm ice}=2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus}=340~{\rm J/g}$
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this strater? $\Delta S = -, \Delta H = -$ $\Delta S = +, \Delta H = -$ $\Delta S = -, \Delta H = +$ $\Delta S = +, \Delta H = +$ Question 4 Which of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? evaporation condensation freezing	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h	1.25 pt the teat 2 grams of ice at -30°C to steam at 100°C. Use the cons: $c_{\rm ice} = 2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus} = 340~{\rm J/g}$ $c_{\rm water} = 4.184~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm vap} = 2260~{\rm J/g}$
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - , \Delta H = -$ $\Delta S = + , \Delta H = -$ $\Delta S = - , \Delta H = +$ $\Delta S = + , \Delta $	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to have a selected t	theat 2 grams of ice at -30°C to steam at 100°C. Use the cons: $c_{\rm ice}=2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus}=340~{\rm J/g}$ $c_{\rm water}=4.184~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm vap}=2260~{\rm J/g}$
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this stater? $\Delta S = - \cdot \Delta H = -$ $\Delta S = + \cdot \Delta H = -$ $\Delta S = - \cdot \Delta H = +$ $\Delta S = +$ $\Delta $	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h values below for your calculation	theat 2 grams of ice at -30°C to steam at 100°C. Use the ons: $c_{\rm ice} = 2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus} = 340~{\rm J/g}$ $c_{\rm water} = 4.184~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm vap} = 2260~{\rm J/g}$
ssoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this strater? $\Delta S = -, \Delta H = -$ $\Delta S = +, \Delta H = -$ $\Delta S = -, \Delta H = +$ $\Delta S = +, \Delta H = +$ Question 4 Which of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? evaporation condensation freezing deposition Question 5	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to have a selected t	theat 2 grams of ice at -30°C to steam at 100°C. Use the ons: $c_{\rm ice} = 2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus} = 340~{\rm J/g}$ $c_{\rm water} = 4.184~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm vap} = 2260~{\rm J/g}$
escoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this strater? $\Delta S = -, \Delta H = -$ $\Delta S = +, \Delta H = +$ $\Delta S = +, \Delta H = +$ Question 4 Which of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? evaporation condensation freezing deposition Question 5	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to h values below for your calculation 6.15 kJ 1.60 kJ	theat 2 grams of ice at -30°C to steam at 100°C. Use the cons: $c_{\rm ice}=2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus}=340~{\rm J/g}$ $c_{\rm water}=4.184~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm vap}=2260~{\rm J/g}$
assoiated with the total change in entropy and enthalpy (ΔS and ΔH) for this strater? $\Delta S = -, \Delta H = -$ $\Delta S = -, \Delta H = +$ $\Delta S = +, \Delta H = +$ Question 4 Which of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? evaporation condensation freezing deposition Question 5 Which of the following statements is ALWAYS true about deposition? None of the other answers are correct	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to have a selected t	theat 2 grams of ice at -30°C to steam at 100°C. Use the cons: $c_{\rm ice}=2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus}=340~{\rm J/g}$ $c_{\rm water}=4.184~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm vap}=2260~{\rm J/g}$
ce is heated at a constant pressure until it melts and vaporizes. What signs are associated with the total change in entropy and enthalpy (ΔS and ΔH) for this so vater? $\Delta S = - , \Delta H = -$ $\Delta S = - , \Delta H = +$ $\Delta S = - , \Delta H = +$ $\Delta S = + , \Delta H = +$ Question 4 Which of the phase changes below might have a $\Delta H = 11.6 \text{ kJ/mol}$? evaporation condensation freezing deposition Question 5 Which of the following statements is ALWAYS true about deposition? None of the other answers are correct $\Delta H < 0$ $\Delta G < 0$	boiling point of methane? 372.54 K 0.09954 K 0.09954°C 99.54 K Question 9 How much heat is required to have a selected t	theat 2 grams of ice at -30°C to steam at 100°C. Use the cons: $c_{\rm ice}=2.09~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm fus}=340~{\rm J/g}$ $c_{\rm water}=4.184~{\rm J/g}~{\rm ^{\circ}C}$ $\Delta H_{\rm vap}=2260~{\rm J/g}$

Use the phase diagram for CO ₂ provided below to answer the following question:
At 300K and 10 bar, what is the stable phase of carbon dioxide?
solid supercritical fluid liquid liquid critical point 200 250 300 350 400 temperature
T (K) liquid carbon dioxide gaseous carbon dioxide solid carbon dioxide carbon dioxide as supercritical fluid
Question 11 1.25 pts
Use the phase diagram for CO ₂ in the question above to answer the following: A sample of carbon dioxide is stored at 10,000 bar and 250K. This sample is then decompressed to 1 bar at constant temperature. Then, at constant pressure it is heated to 400K. Next, it is compressed at constant temperature to 200 bar. According to the phase diagram, how many phase transitions has the sample of carbon dioxide gone through, and what is its final state? 2, gas 3, supercritical fluid
3, liquid
2, supercritical fluid
Question 12 1.25 pts
Which of the following would change the vapor pressure of a sample of water in a closed container?

decreasing the size of the container
 lower the container temperature
 removing water from the container

2 only
1 and 2
2 and 3
1, 2, and 3

1.25 pts

Question 10

Question 13	1.25 p
Which would have a higher vapor pressure: ethanol (C_2H_5OH) or dime (CH_3OCH_3)?	ethyl ether
They would have the same vapor pressure as their molecular weights are the same vapor pressure as their molecular weights.	ne same.
o ethanol	
odimethyl ether	
It is impossible to tell unless the amount of each substance is known.	
Question 14	1.25 p
Rank the following liquids by vapor pressure from lowest to highest: C $C_2H_6,C_4H_{10}.$	₅ H ₁₂ , CH ₄ , C ₃ H ₈ ,
○ CH ₄ < C ₅ H ₁₂ < C ₄ H ₁₀ < C ₃ H ₈ < C ₂ H ₆	
○ CH ₄ < C ₂ H ₆ < C ₃ H ₈ < C ₄ H ₁₀ < C ₅ H ₁₂	
○ C ₅ H ₁₂ < C ₄ H ₁₀ < C ₃ H ₈ < C ₂ H ₆ < CH ₄	
○ C ₂ H ₆ < C ₃ H ₈ < C ₄ H ₁₀ < C ₅ H ₁₂ < CH ₄	
	1.25 p
Question 15 In a closed vessel containing water, the pressure is 18 torr. If we add r vessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without n	more water to the
In a closed vessel containing water, the pressure is 18 torr. If we add r vessel, this equilibrium pressure would	more water to the
In a closed vessel containing water, the pressure is 18 torr. If we add r vessel, this equilibrium pressure would Change, but it is not possible to know if it will increase or decrease without n	more water to the
In a closed vessel containing water, the pressure is 18 torr. If we add r vessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without n increase.	more water to the
In a closed vessel containing water, the pressure is 18 torr. If we add r vessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without n increase. remain the same.	more water to the
In a closed vessel containing water, the pressure is 18 torr. If we add revessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without no increase. remain the same. decrease.	nore water to the nore information. 1.25 p d 20mL respective each container is ne liquid water in it
In a closed vessel containing water, the pressure is 18 torr. If we add revessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without no increase. remain the same. decrease. Question 16 Consider two empty containers A and B whose volumes are 10mL and 1mL of liquid water is put into each container and the temperature of eadjusted to 20°C. The gas pressure in container B, which still has som is found to be 17 torr. How would the pressure in container A and the a	1.25 p 2 20mL respective each container is le liquid water in it amount of liquid
In a closed vessel containing water, the pressure is 18 torr. If we add revessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without no increase. remain the same. decrease. Question 16 Consider two empty containers A and B whose volumes are 10mL and 1mL of liquid water is put into each container and the temperature of eadjusted to 20°C. The gas pressure in container B, which still has som is found to be 17 torr. How would the pressure in container A and the awater in container A compare to that of container B?	1.25 p 2 20mL respective each container is le liquid water in it amount of liquid
In a closed vessel containing water, the pressure is 18 torr. If we add revessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without no increase. remain the same. decrease. Question 16 Consider two empty containers A and B whose volumes are 10mL and 1mL of liquid water is put into each container and the temperature of eadjusted to 20°C. The gas pressure in container B, which still has som is found to be 17 torr. How would the pressure in container A and the awater in container A compare to that of container B? the pressure would be the same, there would be an equal amount of liquid water in the container would be the same, there would be an equal amount of liquid water in the container would be the same, there would be an equal amount of liquid water in the container would be an equal amount of liquid water in the container would be the same, there would be an equal amount of liquid water in the container would be an equal amount of liquid water in the container would be an equal amount of liquid water in the container would be an equal amount of liquid water in the container water would be an equal amount of liquid water in the container water wate	1.25 p 2 20mL respective each container is le liquid water in it amount of liquid
In a closed vessel containing water, the pressure is 18 torr. If we add revessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without no increase. remain the same. decrease. Question 16 Consider two empty containers A and B whose volumes are 10mL and 1mL of liquid water is put into each container and the temperature of eadjusted to 20°C. The gas pressure in container B, which still has som is found to be 17 torr. How would the pressure in container A and the awater in container A compare to that of container B? the pressure would be the same, there would be an equal amount of liquid with the pressure would be greater, there would be less liquid water	1.25 p d 20mL respective each container is the liquid water in its amount of liquid
In a closed vessel containing water, the pressure is 18 torr. If we add revessel, this equilibrium pressure would change, but it is not possible to know if it will increase or decrease without no increase. remain the same. decrease. Question 16 Consider two empty containers A and B whose volumes are 10mL and 1mL of liquid water is put into each container and the temperature of eadjusted to 20°C. The gas pressure in container B, which still has som is found to be 17 torr. How would the pressure in container A and the awater in container A compare to that of container B? the pressure would be the same, there would be an equal amount of liquid water the pressure would be greater, there would be more liquid water the pressure would be the same, there would be more liquid water	1.25 p d 20mL respective each container is the liquid water in its amount of liquid

Question 17	1.25 pts
What is the vapor pressure of carbon disulfide at its normal boiling point?	
Not enough informaiton.	
○ 1.0 atm	
22.4 atm	
○ 2.0 atm	

Question 18	1.25 pts	Question 22	1.25 pts
At 20°C the vapor pressure of dry ice is 56.5 atm. If 10g of dry ice (solid CO ₂) is placed in an evacuated 0.25 L chamber at a constant 20°C, will all of the solid sublime?		Rank the following in terms of decreasing miscibility in C_8H_{18} (octane), a major component of gasoline: C_2H_5CI (chloroethane), H_2O (water), C_2H_5F (fluoroethane), and C_9H_{20} (nonane).	
None of dry ice would sublime.		0.011.501101501155110	
○ Yes.		○ C ₉ H ₂₀ > C ₂ H ₅ Cl > C ₂ H ₅ F > H ₂ O	
There is not enough information to answer this quesiton.		\bigcirc H ₂ O > C ₉ H ₂₀ > C ₂ H ₅ Cl > C ₂ H ₅ F	
Some of the dry ice will sublime, but not all of it.		\bigcirc C ₂ H ₅ Cl > C ₂ H ₅ F > H ₂ O > C ₉ H ₂₀	
		\bigcirc H ₂ O > C ₂ H ₅ F > C ₂ H ₅ Cl > C ₉ H ₂₀	
Question 19	1.25 pts	Question 23	1.25 pts
An unknown liquid has a vapor pressure of 88 mmHg at 45°C and 39 m What is its heat of vaporization?	mHg at 25°C.	Which of the following is a possible combination of values for $\Delta H_{\mathrm{lattice}}$ and $\Delta H_{\mathrm{lattice}}$	$\Delta H_{ m hydration}$
○ 32 kJ/mol		O -200, -304	
32,000 kJ/mol		○ -560, +560	
○ 2000 kJ/mol		· +500, -520	
○ 2000 J/mol		· +640, -620	
Question 20	1.25 pts	Question 24	1.25 pts
are made when are dissolved in		Which of the following would increase the solubility of a gas in water?	
o solutes, solutions, solvents		increase the temperature of the water	
o solutions, solutes, solvents		decrease the temperature of the water	
o solutions, solvents, solutes		3. increase the pressure of the gas above the water	
o solvents, solutes, solutions		O 1 only	
		O 2 only	
		O 2 and 3	
Question 21	1.25 pts	1 and 3	
Both ammonia (NH ₃) and phosphine (PH ₃) are soluble in water. Which is and why? phosphine because it does not form hydrogen bonds with water molecules ammonia because it does not form hydrogen bonds with water molecules ammonia because the N-H bonds are so strong that they cannot break to enallydrogen-bond with water phosphine because the P-H bonds are so strong that they cannot break to enallydrogen-bond with water	able the ammonia to		